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Introduction

Dans le roman Contact de Carl Sagan 1, les radiotéléscopes du monde
entier reçoivent des signaux extraterrestres énumérant la suite des
nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31… Comme il n’existe
aucun processus naturel qui puisse produire cette énumération, le
signal reçu indique très clairement qu’il émane d’êtres ayant une
forme d’intelligence avancée.

Rappelons ce que sont les nombres premiers. Les enfants apprennent à
compter, c’est-à-dire apprennent les nombres entiers « naturels » 0, 1,
2, 3… ceux avec lesquels on peut dénombrer les objets d’une
collection : nous avons 1 nez, 2 bras, 32 dents ; il y a 27 élèves dans
cette classe, 63 185 925 habitants en France en 2006 2…

On apprend la multiplication au CP, et la division peu après.
Apparaissent donc certains nombres entiers, les nombres premiers,
qui ont la propriété de n’avoir aucun diviseur en dehors d’eux-mêmes
et 1. Géométriquement, un nombre p est premier si on ne peut en
aucune manière disposer une collection de p objets dans un
ordonnancement rectangulaire fait de lignes et de colonnes régulières.

 • • • •
• • • • • • • • • • • • • • •

 • • • •
11 est premier 12 n’est pas premier

Il est très facile de véri=er si un nombre entier est premier : on essaie
de le diviser par les nombres plus petits que lui autres que 1. Si l’on
échoue, c’est que le nombre est premier3, d’où la liste entamée plus
haut : 2, 3, 5, 7… S’il n’est pas certain que tout être intelligent aurait
perçu l’intérêt des nombres premiers et donc découvert cette liste, en
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revanche l’argument de Carl Sagan selon lequel cette liste serait une
manifestation d’intelligence supérieure est convaincant.

Cette remarque mérite que nous nous y arrêtions un instant : s’il y a
d’autres formes d’intelligence que la nôtre, en admettant que l’on
puisse, comme cela a été abondamment envisagé dans la science-
=ction, capter des signaux manifestant une forme d’intelligence, leur
interprétation serait probablement à jamais impossible : si les
Martiens discutaient de l’existence de Dieu, le saurait-on ? Tandis que
les nombres premiers…

Leur étude a commencé avec les Grecs, comme le montrent les
Éléments de géométrie d’Euclide 4 puis les travaux d’Ératosthène (276,
Cyrène - 194, Alexandrie) et Diophante (200-284, Alexandrie) qui sont
les débuts de ce qu’on appelle aujourd’hui la théorie des nombres. Depuis
l’Antiquité, la théorie des nombres est au cœur du développement des
mathématiques. Peut-on imaginer poursuite plus gratuite ? Car cela ne
sert à rien. Ou, pour être précis, jusqu’à récemment on pensait que
cela ne servait à rien, et les mathématiciens qui y travaillaient s’en
glori=aient, pensant travailler uniquement « pour l’honneur de
l’esprit humain5 ». Les avancées des dernières décennies en
cryptographie ont bouleversé leurs tranquilles certitudes : la théorie
des nombres, loin d’être seulement recherche pure, est aujourd’hui
une des branches les plus « utiles » des mathématiques, avec des
applications à la transmission des données con=dentielles, notamment
militaires.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 : de ces signes tout de même inutiles
les Grecs jugèrent utile de produire des propositions mathématiques :
que dire des nombres premiers, et comment le dire ? Dans les signaux
extraterrestres, ils sont codés comme une suite d’impulsions : 2
impulsions, puis 3, puis 5… Mais nous n’en usons pas ainsi, préférant le
symbole 13 à : • • • • • • • • • • • • • . Symbole arbitraire certes, mais
symbolisation constitutive de l’écriture des mathématiques, des
mathématiques elles-mêmes.

Quelques transformations de l’écriture
mathématique

Nous nous limiterons ici à décrire les étapes essentielles de l’écriture
des mathématiques « occidentales », celles qui sont nées en Grèce
antique et se sont développées chez les Arabes à Bagdad au Moyen Âge
en béné=ciant de l’apport indien, pour revenir en Europe à la =n du
Moyen Âge et s’y épanouir à partir du xvii e siècle.



La démarche déductive. Les Grecs apportent aux mathématiques et à
leur écriture deux avancées décisives concomitantes. La première est
la place centrale de la méthode déductive : on ne s’intéresse plus tant
à disposer de méthodes de calcul plus ou moins précises ou de faits
géométriques empiriques, mais à la production d’un raisonnement
logique prouvant des énoncés généraux. Mais comme la déduction doit
partir de quelque part, la deuxième avancée grecque, dont les Éléments
d’Euclide sont caractéristiques, consiste à poser des axiomes, propriétés
consensuelles considérées comme vraies au départ de la chaîne
déductive6 : dé=nitions, axiomes, propositions. La comparaison des
Éléments avec un texte contemporain montre que sur ce plan la norme
définie par Euclide reste actuelle.

Système de numération. Par rapport à aujourd’hui, une des choses qui
manquaient aux Grecs est le système de numération décimale ou un
autre système d’eMcacité comparable. Notre système est une
« numération de position en base 10 » qui nécessite 10 symboles. Dans
un tel système, l’interprétation des symboles, les chiNres, utilisés pour
représenter les nombres, dépend entièrement de leur position. On en
trouve les premières traces en Inde dès le vi e siècle, sans que l’on sache
s’il avait été inventé par les Indiens, ou importé de Chine ou d’ailleurs.
Au viii e siècle, sous l’impulsion du calife Al-Mamoun, Bagdad devient
le principal centre mathématique du monde, béné=ciant à la fois de
l’apport grec, par la traduction systématique par les savants de la
Maison de la sagesse des manuscrits conservés à Constantinople, et de
l’inOuence indienne. On y adopte rapidement le système indien de
numération, probablement dès la première moitié du viii e siècle 7. La
méthode se répand dans le monde arabe par l’intermédiaire des
marchands, et c’est à Bejaia (dans l’Algérie d’aujourd’hui) que Léonard
de Pise, alias Fibonacci, l’apprend à la =n du xii e siècle et l’expose dans
son Liber Abaci 8. La numération dite « arabe », et en fait indienne, est
ensuite progressivement adoptée dans toute l’Europe.

Figure 1. Page de géométrie, in Elementa Geometriae
d’Euclide, Venise, 1482. British Museum, Londres.

Figure 2. Portrait de Leonardo Fibonacci (1170-1245).



On saisit bien le saut symbolique que représente la numération de
position par rapport au système des chiNres romains. Alors pourquoi
cette méthode diMcile se répand-elle aussi universellement ? Une
réponse est la facilité des calculs, c’est-à-dire l’existence d’un
algorithme simple et eMcace permettant d’eNectuer les calculs
(multiplication, division). Pour la multiplication, un tel algorithme est
détaillé dans l’ouvrage d’Al-Khwarizmi 9, qui est pour l’essentiel le
même que celui enseigné dans l’enseignement primaire : on apprend à
« poser » sa multiplication et on combine des multiplications par les
nombres à un chiNre et une addition – avec des « retenues »
éventuelles à tous les stades10.

Calcul algébrique. Al-Khwarizmi est surtout l’inventeur de l’algèbre11.
C’est lui qui, pour la première fois, donne la résolution complète des
équations du second degré. C’est d’autant plus remarquable que ses
calculs algébriques sont formulés par des phrases en langue naturelle.
Pour lui, une équation se formule de la manière suivante : « un malet
d i x xayégale trente-neuf dirhams », ce qui se traduit en langage
mathématique moderne par la résolution de l’équation x 2+10 x = 39. Il
faut attendre sept siècles pour que les algébristes italiens (Tartaglia,
Cardan, Bombelli…) aillent au-delà, avec la résolution des équations du
troisième degré. Mais chez eux comme chez Al-Khwarizmi, les calculs
algébriques sont formulés en langue naturelle : dans les écrits de
l’algébriste italien Cardan (1501-1576)12, on trouve des phrases du
type :

prends le tiers du nombre des choses au cube, auquel tu
additionnes le carré de la moitié du nombre de l’équation,
et de tout cela tu extrais la racine carrée

qui se traduit en langue moderne par l’expression

Écriture symbolique. Une troisième révolution13 se produit avec
l’invention de l’écriture symbolique, dont l’introduction revient à
François Viète (Fontenay-le-Comte 1540 - Paris 1603). Son traité14 est
le premier où l’on utilise systématiquement des lettres pour
symboliser des quantités connues (les consonnes) ou inconnues (les
voyelles). Notre usage de la lettre x en est directement issu. Cette
révolution est con=rmée quelques années plus tard par Descartes,
dont l’écriture des mathématiques est très proche d’une écriture
moderne, comme une lecture, même en diagonale, de l’appendice
« Géométrie » du Discours de la méthode 15 suffit à en convaincre.

L’écriture symbolique n’est pas seulement aNaire de commodité.



Revenons un peu en arrière avec l’invention par les algébristes italiens
des nombres « imaginaires » au xvi e siècle. Dans les travaux de Cardan,
puis de Bombelli, intervient, comme pur arti"ce de calcul , un
« nombre », noté aujourd’hui i, dont le carré est -1 ( i 2 = -1) ; ce
« nombre » ne peut pas en être un au sens habituel du terme, car la
règle des signes impose que le carré d’un nombre soit positif. Donc -1
ne peut pas être le carré d’un nombre : le « nombre » i est imaginaire.
Mais une fois qu’on l’a accepté, on doit aussi accepter d’autres
nombres tout aussi « imaginaires », que l’on peut obtenir par les
opérations usuelles (addition, multiplication) à partir de i et des
nombres réels (exemples : 3 i, i+1). Pour Cardan et Bombelli, ces
nombres imaginaires ne sont qu’un arti=ce, certes indispensable, pour
le calcul des solutions de l’équation du 3e degré.

Ils sont néanmoins appelés à jouer un rôle central dans toutes les
mathématiques à partir du xviii e siècle, quand Leonhard Euler 16

introduit la notation i et fait des nombres imaginaires des objets
d’étude en soi, même si, pour lui, ces nombres ne sont que des
symboles. Ce n’est que bien plus tard, au xix e siècle, qu’on donnera à
ces symboles un sens précis, comme objets géométriques ; en
renversant le cheminement, on donne ainsi le statut de nombre à des
objets géométriques17, ce qui sera une source considérable d’idées à
partir du xix e siècle.

Avec le calcul symbolique apparaissent donc deux choses : un outil
d’une incomparable eMcacité, qui permet des calculs qu’on ne pouvait
pas faire auparavant, mais aussi une méthode de création d’objets
mathématiques nouveaux, dont l’acte de naissance consiste à préciser
les règles de calcul auquel il obéit.

Avant même Euler, c’est Leibniz qui, à la =n du xvii e siècle, est le
représentant le plus caractéristique de cette approche. Entre 1666 et
1676 est inventé le calcul appelé « diNérentiel » ou « in=nitésimal » de
manière indépendante par Newton et Leibniz 18. Il s’agit de deux
questions a priori distinctes : calculer les aires de surfaces délimitées
par des courbes et calculer les tangentes à ces courbes. A posteriori, ce
sont les deux faces du même problème. Il ne fait aucun doute que
l’approche de Newton, inspirée par la physique, est plus propice à une
présentation rigoureuse. Mais Leibniz a le génie des notations

Figure 3. Portrait de Leonhard Euler (1707-1783). Gravure
sans date du xix e siècle.



symboliques ; il a recours aux « infinitésimaux » – notion qui n’a aucun

sens19 cohérent avec le reste des mathématiques – pour lesquels il
invente les notations d x, d y … Leibniz n’y attache aucune
interprétation mathématique rigoureuse, mais des règles opératoires
précises et une heuristique qui lui permettent de construire une
théorie eMcace. Celle-ci s’impose dans l’Europe entière dès le début du
xviii e siècle. L’explication en est simple : comme pour le système de
numération de position et comme pour le calcul symbolique de Viète
et Descartes, les notations de Leibniz, qui sont associées à des règles de
calcul simples, ont l’avantage d’une ergonomie bien supérieure à celles
de Newton.

À l’inverse du golem des légendes juives qui devenait vivant lorsque
l’on inscrivait les trois lettres EMET formant le mot « vérité », mais
pouvait être désactivé par les deux lettres MET du mot « mort », les
symboles mathématiques, tels que l’imaginaire i d’Euler, ou le d x de
Leibniz prennent vie une fois pour toutes.

Le texte mathématique

Les mathématiciens20 sont des écrivains : ils « produisent » des textes,
surtout des articles de revues spécialisées, mais aussi des livres
(monographies, manuels, ouvrages de synthèse). Comme la recherche
en cours est publiée dans les articles, ce sont donc eux qui font la
réputation des mathématiciens. Les articles ont le plus souvent entre
un et trois auteurs, rangés par ordre alphabétique21. Leur longueur
varie entre une dizaine de pages et une centaine, très rarement
davantage. Parmi les mathématiciens, certains sont très proli=ques :
Jean Bourgain, mathématicien belge né en 1954, établi aux États-Unis,
médaillé Fields en 1994, est l’auteur ou co-auteur de 350 articles et
monographies. Mais d’autres, également considérés, écrivent peu : la
bibliographie complète d’Andrew Wiles, le mathématicien britannique
né en 1953 qui a résolu la conjecture de Fermat (dont nous parlerons
en détail plus loin), comporte seulement 24 entrées.

Mais pourquoi la production de textes est-elle si importante ? Ce qui
distingue le mathématicien d’un physicien ou d’un biologiste, qui
écrivent eux aussi des articles scienti=ques, c’est que leurs articles
décrivent des dispositifs expérimentaux qui sont en principe
reproductibles et/ou décrivent des observations qui peuvent être
refaites ou corroborées. Le mathématicien, au contraire, produit un
texte qui est sa propre réalité : il n’y a rien d’autre que la dé=nition
des objets, la cohérence des énoncés et le cheminement déductif qu’il



contient. La véri=cation de l’article se fait de deux manières : soit par
véri=cation directe de la correction des démonstrations, soit
négativement par la production de contre-exemples pour certaines
assertions qui y sont faites ou la mise en contradiction de certains
énoncés par rapport au corpus établi de la discipline.

Il se publie plus de 10 000 articles par an, dans un peu plus de
400 revues spécialisées, de qualités et prestiges très diNérenciés. La
plupart de ces articles n’ont que très peu de lecteurs, parfois moins de
dix en tout, et seul un petit nombre dépasse la centaine. Un article ne
s’adresse qu’à des mathématiciens, et plus particulièrement aux
spécialistes de la branche des mathématiques, voire de la spécialité,
sous-spécialité… à laquelle l’article se rattache. L’article, s’il est lu, ne
l’est pas nécessairement juste après sa parution22.

Deux choses frappent immédiatement à la lecture d’un article de
mathématiques. Rédigé le plus souvent en anglais, parfois en français
ou dans d’autres langues, l’article est écrit principalement avec des
phrases en langue naturelle, avec des symboles représentant les objets
mathématiques considérés. L’abondance des objets, et la pauvreté de
notre alphabet, rendent nécessaire de faire appel aux lettres grecques,
à l’emploi diNérencié majuscules/minuscules, mais aussi à des fontes
spéciales : caractères gras, italiques, anglaises, gothiques, chacune
ayant sa propre signi=cation (l’attribution d’un symbole, en
particulier l’usage d’un alphabet ou d’une fonte sont a priori
arbitraires ; mais l’usage impose certaines conventions).

Lorsque les phrases en langue naturelle risquent de manquer de
clarté, et seulement dans ce cas, l’écriture mathématique bascule dans
la langue entièrement formalisée, où seuls les symboles ont droit de
cité.

Bien que ces textes contiennent peu de « formules », ils sont
incompréhensibles pour le lecteur non mathématicien, parce qu’ils
font immédiatement référence à des objets mathématiques
sophistiqués dont la compréhension n’est possible que pour les happy
few. Par exemple, le fameux article d’André Weil de 1964 23 commence
ainsi :

L’intervention du groupe métaplectique comme deus ex
machina dans l’étude des séries thêta a toujours été
mystérieuse. L’objet de cet article est d’apporter…

Même si chacun peut être sensible à l’élégance de cette première
phrase, les deux termes « groupe métaplectique » et « séries thêta »
opèrent une démarcation immédiate : sans même parler du grand
public cultivé, un professeur agrégé de mathématiques ne tirerait pas
grand-chose de la lecture de l’article de Weil, comme d’ailleurs de la
plupart des articles récents de recherche mathématique.



Il y a donc une frontière très nette entre texte savant et texte de
vulgarisation : un texte de vulgarisation ne peut pas rendre compte
complètement d’une avancée mathématique, car il ne contient pas les
éléments nécessaires à sa validation comme vérité mathématique.

Études de cas
Ayant mis en évidence le rôle très particulier du texte mathématique
savant, c’est-à-dire de l’article de recherche, nous allons maintenant
observer, à partir de deux exemples tirés des mathématiques des
quinze dernières années, ses modes de validation. Tentons d’abord
d’en présenter les critères. On peut considérer qu’il y en a trois :

intérêt et originalité des résultats et des méthodes : le résultat
est-il intéressant ?
diMculté et élégance des démonstrations : le résultat est-il
difficile ?
correction des démonstrations : le résultat est-il juste ?

Ces trois critères ne se situent pas sur le même plan. Le troisième
dé=nit le caractère mathématique ou non de l’écrit. Il intervient
comme préalable ; car, s’il n’y a pas de démonstration, il n’y a pas de
théorème24 et il est donc inutile de se prononcer sur l’intérêt ou la
difficulté de l’article.

Le théorème de Fermat.Le premier est la démonstration, en 1994, par le
mathématicien Andrew Wiles, du fameux « grand théorème de
Fermat »25. L’énoncé de Fermat est un des très rares que l’on puisse
comprendre avec les connaissances du « socle commun » enseigné au
collège.

Soit n un entier supérieur ou égal à 3. L’équation x n + y n = z
n n’admet pas de solution entière (c’est-à-dire avec x, y, z
entiers) avec x, y et z non nuls26.

Le mathématicien français Pierre de Fermat (1601-1665), magistrat de
profession, prétendait en avoir une démonstration, mais ne l’avait pas
révélée malgré l’insistance des mathématiciens de son temps : il avait
écrit vers 1637, dans la marge de son livre de chevet, l’ Arithmétique de
Diophante, l’énoncé du théorème, ainsi que la phrase :

De cette chose admirable cette marge trop étroite ne
contiendrait pas la démonstration27.

Depuis, de nombreux cas particuliers (pour des valeurs particulières
de n) avaient été résolus, mais les nombreuses tentatives, par les plus
grands mathématiciens, pour en donner la démonstration dans le cas
général avaient toutes échoué. Bref, le théorème de Fermat n’était



qu’une conjecture, comme les mathématiciens appellent une
proposition qui n’est pas démontrée, mais pour laquelle il existe des
indices et intuitions convaincants de ce qu’elle est vraie. En
l’occurrence, la conjecture était tellement célèbre qu’elle était
couramment abrégée en « Fermat » tout court : « Il travaille sur
Fermat », « Ceci réduit Fermat à… »

Les attaques successives, au cours des années, de Fermat, avaient fait
évoluer le problème. La formulation de la conjecture de
Taniyama-Shimura-Weil à la =n des années 1950, puis les travaux de
Hellegouarch, Frey et Serre avaient abouti à la démonstration, en 1986,
d’un théorème de Ribet montrant que la vérité de la conjecture de
Taniyama-Shimura-Weil impliquait celle de la conjecture de Fermat.

Andrew Wiles, mathématicien anglais né en 1954, professeur à
l’université de Princeton, était considéré comme un des meilleurs
spécialistes mondiaux de la « théorie des nombres », cette branche des
mathématiques qui s’intéresse aux propriétés des nombres entiers.
Pour autant, il publie peu, préférant se consacrer à des projets de
longue haleine. Ainsi, en 1993, il n’a rien publié depuis plusieurs
années. Lors d’un congrès en juin 1993 à l’institut Newton de
Cambridge (Royaume-Uni), il doit donner une série de trois
conférences sur un titre ésotérique pour le commun des mortels,
évocateur pour les initiés « Formes modulaires, courbes elliptiques et
représentations galoisiennes28 », mais en même temps assez vague
pour ne rien révéler. La rumeur enOe, passant en quelques jours de
« Va-t-il annoncer un progrès décisif vers Fermat ? » à « Va-t-il
annoncer Fermat ? » En eNet, à la =n de sa troisième conférence, Wiles
annonce la démonstration d’un cas particulier de la conjecture de
Shimura-Taniyama-Weil – cas particulier certes, mais suMsant pour
que la conjecture de Fermat s’en déduise !

Reste une barrière décisive : sa démonstration est-elle correcte, et en
particulier est-elle complète ? Sept ans de travail acharné sont en jeu.
L’article de 200 pages est tout de suite soumis à la revue mathématique
allemande Inventiones Mathematicæ. L’éditeur, l’américain Barry Mazur,
désigne, à la place des deux qui sont la norme, un groupe de six
« referees », ces relecteurs qui doivent, comme pour toute revue à
comité de lecture, donner un avis sur la nécessité de la publication.
L’un des six, Nick Katz, collègue de Wiles à Princeton, chargé plus
particulièrement du chapitre 3, y consacre son été. Par souci de ne
rien laisser au hasard, il se fait assister par Luc Illusie, professeur à
Orsay. L’un et l’autre sont des mathématiciens de premier plan,
connus pour leur rigueur. Ils lisent ligne à ligne, avec pour but de
comprendre les arguments avancés, et parfois ils restent bloqués. Ils
interrogent alors Wiles par courrier électronique et obtiennent dans
un délai de quelques heures une réponse qui apporte les précisions
nécessaires. Mais la question qu’ils posent le 23 août reste sans
réponse. Dans le courant du mois de septembre, Wiles se rend compte



qu’il y a une erreur.

Des rumeurs se répandent, et =nalement, Wiles lui-même annonce en
décembre qu’il y a une « lacune » dans sa démonstration et ajoute qu’il

espère pouvoir la combler rapidement29.

Il décide en janvier 1994 de faire appel à Richard Taylor, son ancien
étudiant, désormais professeur à Harvard. Ils travaillent tout le
printemps et tout l’été. Wiles est sur le point de renoncer. Mais en
septembre, il comprend brusquement comment combler la lacune.
L’article de 1993 est transformé en deux articles, l’un de Taylor et
Wiles, l’autre de Wiles seul. L’architecture générale reste la même : ces
articles démontrent ce cas particulier de Shimura-Taniyama-Weil 30

qui implique Fermat. Cette fois, la plus grande partie de l’article de
1993 ayant déjà passé le test de la véri=cation avec succès, ce qui reste
est plus facile, et les deux articles sont publiés rapidement, dès 1995,
dans la revue Annals of Mathematics 31.

Pour notre propos ici, l’intérêt de cette longue histoire est d’abord
qu’elle montre que la lecture d’un texte mathématique peut demander
un eNort énorme. Il ne s’agit pas ici seulement de son caractère
ésotérique pour le non-mathématicien, qui va de soi comme
l’introduction du chapitre II de l’article de Wiles le montre :

Ce chapitre est consacré à l’étude de certaines
représentations galoisiennes. Dans la première section,
nous introduisons et étudions la théorie des déformations
d e Mazur et en étudions divers raMnements. Ces
raMnements seront nécessaires pour rendre précise la
correspondance entre anneaux universels de déformation
et anneaux de Hecke32.

Cet eNort de compréhension a été eNectué, pour le texte de Wiles, par
quelques-uns des meilleurs spécialistes mondiaux33 du sujet abordé,
ceux-là mêmes qui avaient essayé de démontrer la conjecture. Ils
étaient, pour la plupart, présents lors de la conférence de Cambridge
o ù Wiles avait annoncé sa démonstration. Et ils étaient bien sûr
volontaires pour participer à la relecture du manuscrit, aboutissement
d’un effort collectif étalé sur des centaines d’années.

La conjecture de Fermat est un de ces grands problèmes qui
structurent les mathématiques sur la longue durée ; les eNorts pour la
résoudre ont fait naître, en plus de trois cent cinquante ans, de
nombreuses idées nouvelles, profondes, dont les conséquences sur le
développement des mathématiques vont bien au-delà du problème
posé par Fermat. Car paradoxalement, l’équation de Fermat est sans
grand intérêt, et la réponse apportée par Wiles n’a guère de
conséquences34. Certains ont même regretté la disparition de ce



véritable moteur de découverte qu’était la poursuite de la conjecture
Fermat, regret tempéré par la nouveauté et les conséquences des
méthodes de Wiles.

La conjecture d e Poincaré. Deuxième exemple, la résolution toute
récente de la conjecture de Poincaré par le mathématicien russe
Grigori Perelman. C’est Poincaré qui, en 1904, posa la question
suivante :

Est-il possible que le groupe fondamental d’une variété V
de dimension 3 se réduise à la substitution identique, et que
pourtant V ne soit pas la sphère35 ?

Question rhétorique, car Poincaré pensait que la réponse était
négative.

En langage mathématique contemporain, la conjecture se traduit par :
Si une variété compacte de dimension 3 est simplement connexe (SC),
alors cette variété est homéomorphe à la sphère de dimension 336.
Poincaré sait bien que cette dernière propriété est vraie en dimension 2.
Essayons d’abord de comprendre ce cas « bien connu ». Quand le
mathématicien parle de sphère, il distingue l’objet plein, appelé boule,
de sa surface, la pellicule sans épaisseur séparant intérieur et
extérieur, que l’on appelle sphère. Ainsi, la surface de la Terre est une
sphère37, dont tous les points sont à 6 378 km du centre, mais les
personnages de Jules Verne voyagent dans la boule. Ce que nous
mangeons d’une orange est son intérieur, la boule, et non la peau, la
sphère. Une sphère est de dimension 2, car il faut exactement deux
paramètres pour y repérer un point : dans le cas de la Terre, la
longitude et la latitude, tandis que la boule est de dimension 3, car un
point de la boule est repéré par sa longitude, sa latitude et sa
profondeur.

Du point de vue de la topologie, la boule est un objet très simple, tout
simplement parce qu’on peut rapetisser une boule à l’in=ni jusqu’à un
point sans en changer la forme. Ce n’est pas le cas pour la sphère, qui
est donc plus intéressante. La principale observation est qu’on ne peut
pas attraper un objet sphérique, par exemple un ballon, avec un lasso :
dès qu’on serre le nœud coulant, la corde glisse sur le ballon et =nit
par ne rien enserrer. C’est cette propriété qu’on exprime
mathématiquement par « la sphère est SC  ».

Une surface ayant la forme d’une chambre à air n’est pas SC  : on peut
nouer une corde autour de la chambre à air de telle façon qu’il ne sera
pas possible de l’enlever sans défaire le nœud, casser la corde ou
déchirer la chambre à air. Une chambre à air ne peut pas être
déformée en un ballon, mais un ballon de rugby peut être déformé en
ballon de football. Ces faits sont des manifestations visibles de la
propriété de Poincaré en dimension 2 : une variété SC de dimension 2



est homéomorphe à une sphère.

Concevoir ce qu’est une sphère de dimension 3 n’est pas chose facile ; de
même qu’une sphère de dimension 2 ne peut être comprise que
baignant dans un espace de dimension 3, une sphère de dimension 3
ne peut être comprise que baignant dans un espace de dimension 4,
dont notre intuition géométrique ne rend pas compte. L’idée géniale
d e Poincaré est que ce qui vaut en dimension 2 doit être également
vrai en dimension 3.

Dans le courant du xx e siècle il y eut de nombreuses tentatives pour
démontrer la conjecture de Poincaré. Toutes ont échoué, malgré
quelques annonces prématurées réduites à néant par la mise en
évidence d’erreurs ou de lacunes dans la démonstration : il y un
véritable cimetière d’annonces ratées38, sans parler évidemment des
bien plus nombreuses tentatives dont les auteurs ont compris par eux-
mêmes qu’elles n’aboutiraient pas.

La conjecture de Poincaré fut rapidement généralisée aux dimensions
supérieures à 3. La formulation en est un peu plus compliquée, et nous
ne la donnerons pas ici. Curieusement, les généralisations se sont
révélées plus faciles à démontrer que le problème initial : en 1960, le
mathématicien américain Stephen Smale donna une démonstration
valable en toute dimension ≥ 5. Il fallut encore attendre plus de vingt
ans pour qu’un autre mathématicien américain, Michael Freedman,
s’appuyant notamment sur des résultats du Britannique Simon
Donaldson, donne la démonstration en dimension 4. Pour leurs
travaux, Smale, Freedman et Donaldson obtinrent tous trois la
médaille Fields, Smale en 1966, Freedman et Donaldson en 1986. Et il
fallut encore vingt ans pour qu’un mathématicien russe, Grigori
Perelman, publie, en 2002 et 2003, trois prépublications sur le site
arXiv annonçant la démonstration en dimension 3.

Perelman suivait une voie ouverte en 1982 par William Thurston, lui
aussi médaillé Fields, et par Richard Hamilton. Thurston avait formulé,
dans le cadre d’un ambitieux programme pour « comprendre la
dimension 339 », une conjecture dite de « géométrisation » qui
impliquait celle de Poincaré. Indépendamment, Hamilton avait
proposé une approche utilisant une équation aux dérivées partielles,
donc des méthodes d’analyse, pour s’attaquer au problème, et la série
d’articles qu’il publie entre 1982 et 1997 =t faire de grandes avancées
dans cette direction.

La parution des prépublications de Perelman suscita immédiatement
une énorme curiosité, malgré le scepticisme induit par le nombre
important d’échecs précédents, puis une intense activité (aux États-
Unis, en Chine, en France…) pour comprendre les idées et véri=er si la
démonstration était complète. En 2003, la prudence est encore de
mise ; l’éminent mathématicien américain John Milnor écrit :



Néanmoins, il est clair qu’il a introduit des méthodes
nouvelles qui sont à la fois puissantes et belles, et qu’il a
apporté une contribution substantielle à notre

compréhension40.

E n 2005, après deux années de travail collectif à Grenoble sur les
manuscrits de Perelman, deux mathématiciens français, Laurent
Bessière et Gérard Besson, expriment un optimisme prudent :

Les articles de Perelman sont diMciles à lire et leur
véri=cation pas encore terminée, notamment en ce qui
concerne l’étude en temps long du Oot avec chirurgie. […] À
ce jour, mon humble avis est que la conjecture de Poincaré
est prouvée41.

Toutefois, le cas de la conjecture de Poincaré est plus
« simple » dans le schéma de G. Perelman. […] L’auteur du
présent texte est convaincu que les conjectures 0.1 et 0.2
sont prouvées42.

E n mai 2006 la prudence est abandonnée : le comité Fields décide
d’attribuer à Perelman une des médailles Fields qui doivent être
décernées l’été suivant au congrès de Madrid. Sollicité, celui-ci répond
en substance au président de l’Union mathématique internationale
que le prix est sans aucune importance pour lui, ajoutant cette phrase
sublime43 :

Tout le monde comprenant que [ma] démonstration est
correcte, aucune autre reconnaissance n’est nécessaire.

Ce refus fait les titres de journaux, heureux de con=rmer ainsi le
cliché du savant fou – et en eNet, Perelman est un personnage pour le
moins excentrique. Les autres médailles Fields passent au second plan,
ainsi que l’ampleur de la réalisation de Perelman lui-même.

*

Nous avons indiqué ci-dessus trois critères de jugement d’un résultat
mathématique : intéressant, diMcile, juste. On ne s’étonnera pas que
les deux narrations de la section précédente con=rment la pertinence
de ces critères.

Vérité. On s’attend qu’une assertion mathématique soit évidemment
juste, comme 2 + 2 = 4, ou évidemment fausse : c’est presque le sens
courant du mot mathématique. Nos exemples ont montré, au
contraire, à quel point il est difficile d’établir un jugement.

Intérêt e t di3culté. Si les résultats annoncés par Wiles et Perelman
n’avaient pas été intéressants, ils n’auraient pas suscité un tel eNort de



véri=cation. Les problèmes étaient anciens, et c’est l’histoire qui leur
avait donné leurs titres de noblesse : toute annonce de solution allait
automatiquement susciter l’intérêt des spécialistes et bien au-delà. La
diMculté des démonstrations allait de soi, ce que l’eNort de
véri=cation a con=rmé. Dans un cas comme dans l’autre, les
démonstrations n’ont pas déçu, bien au contraire, car elles ont l’une et
l’autre dû surmonter des diMcultés techniques considérables et se
reposer sur des approches entièrement nouvelles.

On voit ainsi, à travers ces exemples, à quel point les mathématiques
s’écartent des clichés dont on les affuble :

les mathématiques ne sont pas une pure construction de l’esprit,
car la réalité mathématique oppose à l’eNort de vérité une
résistance obstinée ;
les mathématiques ne sont pas un exercice de pure logique ou de
simple comptabilité : esprit créatif et imagination sont
constamment requis.

Loin d’être un long Oeuve tranquille, les mathématiques sont donc un
sport de combat. Il faut non seulement travailler, mais construire un
cadre approprié de langage. Par surprise, les symboles de ce langage
prennent vie bien au-delà du cadre qui leur avait été assigné au
départ. Et tout ce combat est mené au nom d’un objectif sublime et
dérisoire de vérité, avec le risque permanent de l’échec.

Craindre l’erreur et craindre la vérité est une seule et même
chose. Celui qui craint de se tromper est impuissant à
découvrir. C’est quand nous craignons de nous tromper que
l’erreur qui est en nous se fait immuable comme un roc. Car
dans notre peur, nous nous accrochons à ce que nous avons
décrété « vrai » un jour, ou à ce qui depuis toujours nous a
été présenté comme tel. Quand nous sommes mus, non par
la peur de voir s’évanouir une illusoire sécurité, mais par
une soif de connaître, alors l’erreur, comme la souNrance
ou la tristesse, nous traverse sans se =ger jamais, et la trace
de son passage est une connaissance renouvelée.
Alexandre Grothendieck 44.

L’édi=ce ainsi construit est splendide. Mais nous autres
mathématiciens savons bien, avant même de commencer, qu’à
l’extérieur de notre discipline personne ne peut comprendre notre
langue ni apprécier la beauté de notre travail. Et, au milieu du combat,
nous découvrons que toutes les précautions que nous avons prises
rendent même difficile la communication entre nous.

Notes



1. Sagan, 1985. Film réalisé par Robert Zemeckis, avec Jodie Foster.
2. Chiffres publiés par l’INSEE le 2 janvier 2009.
3. Dans la pratique, c’est facile à faire uniquement pour des nombres
assez petits. Sinon, la méthode est impraticable, car trop longue.
4. Euclide.
5. « Le but unique de la science, c’est l’honneur de l’esprit humain »
(Jacobi, 1830).
6 . Le système d’axiomes est arbitraire, mais c’est la richesse de la
théorie qu’on en déduit, richesse formelle ou capacité à rendre compte
de la réalité physique, qui lui donne de la valeur.
7. Il est exposé dans Al-Khwarizmi. Le mot « algorithme » est dérivé du
nom du mathématicien de Bagdad Al-Khwarizmi (790-840) : le titre
latin de l’ouvrage pourrait se traduire par : « Al-Khwarizmi sur l’art
indien de la numération ». La notion d’algorithme, très importante
historiquement, a pris une place centrale avec l’apparition de
l’informatique : un programme n’est rien d’autre que l’écriture d’un
algorithme dans un langage de programmation.
8. Fibonacci, 1202.
9. Ibid.
10. Il y a ici un point mathématiquement délicat : la distinction entre
nombre et écriture du nombre. Les nombres « 347 » et « 59 » s’écrivent
respectivement 347 et 59. La multiplication « 347 » × « 59 » = « 20 473 »
qui a pour écriture 20 473. L’algorithme de la multiplication donne une
méthode pour établir cette représentation, justi=ée par un théorème
montrant qu’en eNet le résultat de la multiplication et le résultat
fourni par l’algorithme coïncident.
11. Son ouvrage principal est Al-Khwarizmi, 825, Al Kitab al Mukhtasar "
Hosab al jabr wal-I-Muqabala, publié vers 825. Le mot « algèbre » est
dérivé du mot « al jabr » contenu dans le titre du livre, qui en eNet
donne les bases du calcul algébrique.
12. Cardan, 1545. La résolution elle-même est attribuée à Tartaglia,
mais c’est Cardan qui la publie pour la première fois.
1 3 . Sur l’écriture symbolique en mathématiques et ses enjeux, on
pourra se reporter à Serfati, 2005.
14. Viète, 1591.
15. Descartes, 1637.
16. Mathématicien suisse (1707-1783).
17. Il ne faut pas confondre cette rupture avec celle de Descartes, qui,
par la méthode des coordonnées, rend compte de la géométrie par le
calcul. Ici, ce sont les points de l’espace eux-mêmes qui deviennent des
nombres. On pourra consulter Dhombres, 2005.
18. Isaac Newton (Woolsthorpe 1642 - Londres 1727) a élaboré son
« calcul des Ouxions » dès 1666 ; mais la première publication le
développant est Newton 1687. Gottfried Wilhelm Leibniz (Leipzig 1646
- Hanovre 1716) élabore son calcul diNérentiel entre 1673 et 1676, et
l’expose dans Leibniz, 1684.
19. Cette assertion doit être nuancée : la découverte de l’analyse « non



standard » dans les années 1960, à partir des travaux des logiciens, a
permis de donner un sens aux infinitésimaux de Leibniz.
2 0 . Par convention, dans ce texte, le mot mathématicien se réfère
uniquement au chercheur en mathématiques qui travaille dans la
recherche académique (quel que soit son statut : pour la France,
enseignant-chercheur ou chercheur dans un organisme).
21. Dans les sciences expérimentales, l’ordre dans l’énumération des
auteurs est lié à l’importance de leur contribution individuelle, selon
des conventions complexes.
22. En biologie, la plupart des articles publiés sont cités dans un délai
de trois ans après leur publication, après quoi ils ne le sont presque
plus ; ce qui n’est pas du tout le cas en mathématiques où les citations
s’étalent sur de nombreuses années.
23. Weil, 1964.
24. Il importe de nuancer cette aMrmation. D’abord par une évidence :
un article contenant en général plusieurs énoncés, il est possible
qu’une erreur éventuelle n’entache qu’une partie des assertions de
l’article. Mais de manière plus essentielle, il arrive qu’un travail
mathématique dont les démonstrations sont incomplètes soit
néanmoins considéré comme représentant une avancée importante
(cf. Andler, 2005).
25. Voir les détails dans l’excellent livre de vulgarisation : Singh, 1997.
On pourra aussi consulter avec pro=t l’ouvrage plus érudit : Goldstein,
1995.
2 6 . Pour n = 2, l’équation admet bien au contraire une in=nité de
solutions, dont la plus simple est x = 3, y = 4, z = 5. Par le théorème de
Pythagore, le cas n = 2 s’interprète comme la recherche de triangles
rectangles dont les longueurs des côtés sont des nombres entiers.
2 7 . « Cuius rei demonstationem mirabilem sane detexi hanc marginis
exiguitas non caperet. » On pense que Fermat avait appliqué, à tort dans
ce cas, sa méthode de descente in=nie qui lui avait permis de résoudre
d’autres équations analogues à celle-là.
28. « Modular forms, elliptic curves and Galois representations. »
29. La distinction entre erreur et lacune est parfois subtile, ou aNaire
de communication : la découverte d’une erreur dans une
démonstration est la mise en évidence, par un exemple, de ce qu’une
proposition qui joue un rôle décisif dans l’enchaînement logique est
fausse. Une lacune est la découverte que la démonstration d’une
proposition également décisive manque, et qu’elle ne va pas de soi,
alors qu’elle était considérée par l’auteur comme plus ou moins
évidente.
30. En 2001, Christophe Breuil, Brian Conrad, Fred Diamond et Richard
Taylor ont achevé la démonstration de la conjecture dans le cas
général.
31. Wiles, 1995 ; Taylor et Wiles, 1995.
32. « This chapter is devoted to the study of certain Galois representations. In
the "rst section, we introduce and study Mazurs’ deformation theory and
study various re"nements of it. These re"nements will be needed later to make



precise the correspondence between the universal deformation rings and the
Hecke rings. »
33. Le caractère international de la recherche n’est pas un vain mot.
Pour ne parler que du théorème de Fermat et des personnages cités
dans ce bref résumé, Fermat est français, comme Weil, Serre,
Hellegouarch et Illusie ; Taniyama et Shimura sont japonais ; Ribet,
Katz et Mazur sont américains ; Frey est allemand ; Wiles et Taylor sont
britanniques.
34. A contrario la conjecture ou hypothèse de Riemann, qui date de
1859 et n’est toujours pas démontrée, a de très nombreuses
conséquences ; beaucoup de théorèmes sur les nombres premiers sont
démontrés « si l’hypothèse de Riemann est vérifiée ».
35. Poincaré [1904].
36. Voir le texte de John Milnor sur la conjecture de Poincaré, ainsi
que plusieurs documents très intéressants à l’adresse :
http://www.claymath.org/millennium/Poincare_Conjecture/perelma
n+expositions.php
37. Cette assertion est légèrement inexacte, car la Terre est aplatie aux
pôles, mais c’est sans importance ici.
38. Voir Bing, 1964. Depuis 1964, le cimetière s’était bien enrichi.
39. Après les travaux de Smale, il était clair que les questions ouvertes
les plus intéressantes concernaient les dimensions 3 et 4, l’une et
l’autre posant des problèmes très différents.
40. « However, it is clear that he has introduced new methods that are both
powerful and beautiful and made a substantial contribution to our
understanding. » (Milnor, 2003.)
41. Laurent Bessière, in Bessière et al., 2005.
42. Gérard Besson, in ibid.
43. http://en.wikipedia.org/wiki/Grigori_Perelman
44. Grothendieck, 1984, p. 129.
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