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Introduction

Dans le roman Contact de Carl Sagan L, les radiotéléscopes du monde
entier regoivent des sighaux extraterrestres énumérant la suite des
nombres premiers: 2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31... Comme il n’existe
aucun processus naturel qui puisse produire cette énumération, le
signal recu indique tres clairement qu’il émane d’étres ayant une

forme d’intelligence avancée.

Rappelons ce que sont les nombres premiers. Les enfants apprennent a
compter, c’est-a-dire apprennent les nombres entiers « naturels » 0, 1,
2, 3.. ceux avec lesquels on peut dénombrer les objets d'une

collection : nous avons 1 nez, 2 bras, 32 dents ; il y a 27 éléves dans

cette classe, 63 185 925 habitants en France en 2006 °...

On apprend la multiplication au CP, et la division peu apres.
Apparaissent donc certains nombres entiers, les nombres premiers,
qui ont la propriété de n’avoir aucun diviseur en dehors d’eux-mémes
et 1. Géométriquement, un nombre p est premier si on ne peut en
aucune maniére disposer une collection de p objets dans un

ordonnancement rectangulaire fait de lignes et de colonnes réguliéres.

11 est premier|12 n’est pas premier

1 est tres facile de vérifier si un nombre entier est premier : on essaie
de le diviser par les nombres plus petits que lui autres que 1. Si 'on
échoue, c’est que le nombre est premier?, d’oti la liste entamée plus
haut : 2, 3, 5, 7... S’il n’est pas certain que tout étre intelligent aurait
percu l'intérét des nombres premiers et donc découvert cette liste, en
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revanche I'argument de Carl Sagan selon lequel cette liste serait une

manifestation d’intelligence supérieure est convaincant.

Cette remarque mérite que nous nous y arrétions un instant : s'il y a
d’autres formes d’intelligence que la ndtre, en admettant que I'on
puisse, comme cela a été abondamment envisagé dans la science-
fiction, capter des signaux manifestant une forme d’intelligence, leur
interprétation serait probablement a jamais impossible : si les
Martiens discutaient de I’existence de Dieu, le saurait-on ? Tandis que

les nombres premiers...

Leur étude a commencé avec les Grecs, comme le montrent les

Eléments de géométrie d’Euclide * puis les travaux d’Eratosthéne (276,
Cyréne - 194, Alexandrie) et Diophante (200-284, Alexandrie) qui sont
les débuts de ce qu’on appelle aujourd’hui la théorie des nombres. Depuis
I’Antiquité, la théorie des nombres est au cceur du développement des
mathématiques. Peut-on imaginer poursuite plus gratuite ? Car cela ne
sert a rien. Ou, pour étre précis, jusqu’a récemment on pensait que
cela ne servait a rien, et les mathématiciens qui y travaillaient s’en

glorifiaient, pensant travailler uniquement « pour I'honneur de

esprit humain® ». Les avancées des derniéres décennies en

cryptographie ont bouleversé leurs tranquilles certitudes : la théorie
des nombres, loin d’étre seulement recherche pure, est aujourd’hui
une des branches les plus « utiles » des mathématiques, avec des
applications a la transmission des données confidentielles, notamment

militaires.

2,3,5,7,11, 13, 17, 19, 23, 29, 31 : de ces signes tout de méme inutiles
les Grecs jugerent utile de produire des propositions mathématiques :
que dire des nombres premiers, et comment le dire ? Dans les signaux
extraterrestres, ils sont codés comme une suite d'impulsions : 2
impulsions, puis 3, puis 5... Mais nous n’en usons pas ainsi, préférant le
symbole 13 2 : ¢ eeeeeeeeesee Symbole arbitraire certes, mais
symbolisation constitutive de Iécriture des mathématiques, des

mathématiques elles-mémes.

Quelques transformations de I’écriture

mathématique

Nous nous limiterons ici a décrire les étapes essentielles de 1'écriture
des mathématiques « occidentales », celles qui sont nées en Grece
antique et se sont développées chez les Arabes 2 Bagdad au Moyen Age
en bénéficiant de I'apport indien, pour revenir en Europe a la fin du

Moyen Age et s’y épanouir a partir du xvif® siecle.



Figure 1. Page de géométrie, in Elementa Geometriae
d’Euclide, Venise, 1482. British Museum, Londres.

La démarche déductive. Les Grecs apportent aux mathématiques et a
leur écriture deux avancées décisives concomitantes. La premiere est
la place centrale de la méthode déductive : on ne s’intéresse plus tant
a disposer de méthodes de calcul plus ou moins précises ou de faits
géométriques empiriques, mais a la production d’un raisonnement
logique prouvant des énoncés généraux. Mais comme la déduction doit
partir de quelque part, la deuxiéme avancée grecque, dont les Eléments
d’Euclide sont caractéristiques, consiste a poser des axiomes, propriétés
consensuelles considérées comme vraies au départ de la chaine
déductive® : définitions, axiomes, propositions. La comparaison des
Eléments avec un texte contemporain montre que sur ce plan la norme
définie par Euclide reste actuelle.

Figure 2. Portrait de Leonardo Fibonacci (1170-1245).

Systéme de numération. Par rapport a aujourd’hui, une des choses qui
manquaient aux Grecs est le systéme de numération décimale ou un
autre systeme d'efficacité comparable. Notre systéme est une
« numération de position en base 10 » qui nécessite 10 symboles. Dans
un tel systeme, I'interprétation des symboles, les chiffres, utilisés pour
représenter les nombres, dépend entierement de leur position. On en

trouve les premiéres traces en Inde dés le vi® siécle, sans que I'on sache

s'il avait été inventé par les Indiens, ou importé de Chine ou d’ailleurs.

Au viii® siecle, sous I'impulsion du calife Al-Mamoun, Bagdad devient
le principal centre mathématique du monde, bénéficiant a la fois de
'apport grec, par la traduction systématique par les savants de la
Maison de la sagesse des manuscrits conservés a Constantinople, et de
I'influence indienne. On y adopte rapidement le systeme indien de

numération, probablement dés la premiére moitié du viii® siecle 7. La
méthode se répand dans le monde arabe par l'intermédiaire des
marchands, et c’est a Bejaia (dans I'Algérie d’aujourd’hui) que Léonard
de Pise, alias Fibonacci, I'apprend a la fin du xii® siécle et I'expose dans
son Liber Abaci 8. La numération dite « arabe », et en fait indienne, est
ensuite progressivement adoptée dans toute I’'Europe.



On saisit bien le saut symbolique que représente la numération de
position par rapport au systéme des chiffres romains. Alors pourquoi
cette méthode difficile se répand-elle aussi universellement ? Une
réponse est la facilité des calculs, c’est-a-dire I'existence d’un
algorithme simple et efficace permettant d’effectuer les calculs
(multiplication, division). Pour la multiplication, un tel algorithme est

détaillé dans l'ouvrage d’Al-Khwarizmi °, qui est pour l'essentiel le
méme que celui enseigné dans I'enseignement primaire : on apprend a
« poser » sa multiplication et on combine des multiplications par les
nombres a un chiffre et une addition - avec des « retenues »

éventuelles 2 tous les stades'®.

Calcul algébrique. Al-Khwarizmi est surtout I'inventeur de I'algébre’!.
C’est lui qui, pour la premiere fois, donne la résolution complete des
équations du second degré. C’est d’autant plus remarquable que ses
calculs algébriques sont formulés par des phrases en langue naturelle.
Pour lui, une équation se formule de la maniére suivante : « un malet
dix xayégale trente-neuf dirhams », ce qui se traduit en langage

mathématique moderne par la résolution de I'équation x 2+10 x = 39. 11
faut attendre sept siecles pour que les algébristes italiens (Tartaglia,
Cardan, Bombelli...) aillent au-dela, avec la résolution des équations du
troisieme degré. Mais chez eux comme chez Al-Khwarizmi, les calculs

algébriques sont formulés en langue naturelle : dans les écrits de
lalgébriste italien Cardan (1501-1576)'?, on trouve des phrases du
type:

prends le tiers du nombre des choses au cube, auquel tu
additionnes le carré de la moitié du nombre de I'équation,

et de tout cela tu extrais la racine carrée

qui se traduit en langue moderne par I'expression

Ecriture symbolique. Une troisiéme révolution'® se produit avec
I'invention de l'écriture symbolique, dont l'introduction revient a

Frangois Viéte (Fontenay-le-Comte 1540 - Paris 1603). Son traité'* est
le premier ol l'on utilise systématiquement des lettres pour
symboliser des quantités connues (les consonnes) ou inconnues (les
voyelles). Notre usage de la lettre x en est directement issu. Cette
révolution est confirmée quelques années plus tard par Descartes,
dont D'écriture des mathématiques est trés proche d’une écriture

moderne, comme une lecture, méme en diagonale, de 'appendice

« Géométrie » du Discours de la méthode > suffit A en convaincre.

Lécriture symbolique n’est pas seulement affaire de commodité.



Revenons un peu en arriere avec I'invention par les algébristes italiens

des nombres « imaginaires » au xvi° siécle. Dans les travaux de Cardan,

puis deBombelli, intervient, comme pur artifice de calcul, un

« nombre », noté aujourd’hui i, dont le carré est -1 (i ? = -1) ; ce
« nombre » ne peut pas en étre un au sens habituel du terme, car la
régle des signes impose que le carré d'un nombre soit positif. Donc -1
ne peut pas étre le carré d'un nombre : le « nombre » i est imaginaire.
Mais une fois qu'on I'a accepté, on doit aussi accepter d’autres
nombres tout aussi « imaginaires », que l'on peut obtenir par les
opérations usuelles (addition, multiplication) a partir dei et des
nombres réels (exemples : 3 i, i+1). Pour Cardan et Bombelli, ces
nombres imaginaires ne sont qu'un artifice, certes indispensable, pour

le calcul des solutions de '’équation du 3¢ degré.

Ils sont néanmoins appelés a jouer un rdle central dans toutes les

mathématiques 3 partir duxviii® siécle, quand Leonhard Euler
introduit la notationi et fait des nombres imaginaires des objets

d’étude en soi, méme si, pour lui, ces nombres ne sont que des

symboles. Ce n’est que bien plus tard, au xix® siécle, qu’on donnera a
ces symboles un sens précis, comme objets géométriques ; en

renversant le cheminement, on donne ainsi le statut de nombre a des
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objets géométriques'’, ce qui sera une source considérable d’idées a

partir du xix® siécle.

Avec le calcul symbolique apparaissent donc deux choses : un outil
d’une incomparable efficacité, qui permet des calculs qu’on ne pouvait
pas faire auparavant, mais aussi une méthode de création d’objets
mathématiques nouveaux, dont I'acte de naissance consiste a préciser

les régles de calcul auquel il obéit.

Figure 3. Portrait de Leonhard Euler (1707-1783). Gravure

sans date du xix® siécle.

Avant méme Euler, c’estLeibniz qui, a la fin duxvii® siécle, est le
représentant le plus caractéristique de cette approche. Entre 1666 et
1676 est inventé le calcul appelé « différentiel » ou « infinitésimal » de

maniére indépendante par Newton et Leibniz '8, 1l s’agit de deux
questions a priori distinctes : calculer les aires de surfaces délimitées
par des courbes et calculer les tangentes a ces courbes. A posteriori, ce
sont les deux faces du méme probléme. Il ne fait aucun doute que
I'approche de Newton, inspirée par la physique, est plus propice a une
présentation rigoureuse. Mais Leibniz a le génie des notations



symboliques ; il a recours aux « infinitésimaux » - notion qui n’a aucun

sens'® cohérent avec le reste des mathématiques - pour lesquels il
invente les notations d x, d y ..Leibniz n’y attache aucune
interprétation mathématique rigoureuse, mais des régles opératoires
précises et une heuristique qui lui permettent de construire une
théorie efficace. Celle-ci s'impose dans 'Europe entiére deés le début du

xviii® siécle. Lexplication en est simple : comme pour le systéme de
numération de position et comme pour le calcul symbolique de Viete
et Descartes, les notations de Leibniz, qui sont associées a des regles de
calcul simples, ont 'avantage d’une ergonomie bien supérieure a celles
de Newton.

A l'inverse du golem des légendes juives qui devenait vivant lorsque
I'on inscrivait les trois lettres EMET formant le mot « vérité », mais
pouvait étre désactivé par les deux lettres MET du mot « mort », les
symboles mathématiques, tels que I'imaginaire i d’Euler, ou le d x de

Leibniz prennent vie une fois pour toutes.

Le texte mathématique

20 sont des écrivains : ils « produisent » des textes,

Les mathématiciens
surtout des articles de revues spécialisées, mais aussi des livres
(monographies, manuels, ouvrages de synthése). Comme la recherche
en cours est publiée dans les articles, ce sont donc eux qui font la

réputation des mathématiciens. Les articles ont le plus souvent entre

un et trois auteurs, rangés par ordre alphabétique?!. Leur longueur
varie entre une dizaine de pages et une centaine, trés rarement
davantage. Parmi les mathématiciens, certains sont tres prolifiques :
Jean Bourgain, mathématicien belge né en 1954, établi aux Etats-Unis,
médaillé Fields en 1994, est I'auteur ou co-auteur de 350 articles et
monographies. Mais d’autres, également considérés, écrivent peu : la
bibliographie compléte d’Andrew Wiles, le mathématicien britannique
né en 1953 qui a résolu la conjecture de Fermat (dont nous parlerons
en détail plus loin), comporte seulement 24 entrées.

Mais pourquoi la production de textes est-elle si importante ? Ce qui
distingue le mathématicien d'un physicien ou d’'un biologiste, qui
écrivent eux aussi des articles scientifiques, c’est que leurs articles
décrivent des dispositifs expérimentaux qui sont en principe
reproductibles et/ou décrivent des observations qui peuvent étre
refaites ou corroborées. Le mathématicien, au contraire, produit un
texte qui est sa propre réalité : il n’y a rien d’autre que la définition
des objets, la cohérence des énoncés et le cheminement déductif qu’il



contient. La vérification de I'article se fait de deux manieres : soit par
vérification directe de la correction des démonstrations, soit
négativement par la production de contre-exemples pour certaines
assertions qui y sont faites ou la mise en contradiction de certains
énoncés par rapport au corpus établi de la discipline.

Il se publie plus de 10 000 articles par an, dans un peu plus de
400 revues spécialisées, de qualités et prestiges tres différenciés. La
plupart de ces articles n’ont que trés peu de lecteurs, parfois moins de
dix en tout, et seul un petit nombre dépasse la centaine. Un article ne
s’adresse qu’a des mathématiciens, et plus particuliérement aux
spécialistes de la branche des mathématiques, voire de la spécialité,
sous-spécialité... a laquelle I'article se rattache. Larticle, s’il est lu, ne

I’est pas nécessairement juste apres sa parution??,

Deux choses frappent immédiatement a la lecture d’'un article de
mathématiques. Rédigé le plus souvent en anglais, parfois en francais
ou dans d’autres langues, I'article est écrit principalement avec des
phrases en langue naturelle, avec des symboles représentant les objets
mathématiques considérés. Labondance des objets, et la pauvreté de
notre alphabet, rendent nécessaire de faire appel aux lettres grecques,
a 'emploi différencié majuscules/minuscules, mais aussi a des fontes
spéciales : caractéres gras, italiques, anglaises, gothiques, chacune
ayant sa propre signification (I'attribution d'un symbole, en
particulier l'usage d'un alphabet ou d'une fonte sonta priori

arbitraires ; mais 'usage impose certaines conventions).

Lorsque les phrases en langue naturelle risquent de manquer de
clarté, et seulement dans ce cas, I’écriture mathématique bascule dans
la langue entieérement formalisée, ou seuls les symboles ont droit de
cité.

Bien que ces textes contiennent peu de « formules », ils sont
incompréhensibles pour le lecteur non mathématicien, parce qu’ils
font immédiatement référence a des objets mathématiques
sophistiqués dont la compréhension n’est possible que pour les happy
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few. Par exemple, le fameux article d’André Weil de 1964 > commence

ainsi :

Lintervention du groupe métaplectique comme deus ex
machina dans l'étude des séries théta a toujours été
mystérieuse. L’objet de cet article est d’apporter...

Méme si chacun peut étre sensible a 1'élégance de cette premiere
phrase, les deux termes « groupe métaplectique » et « séries théta »
opérent une démarcation immédiate : sans méme parler du grand
public cultivé, un professeur agrégé de mathématiques ne tirerait pas
grand-chose de la lecture de I'article de Weil, comme d’ailleurs de la

plupart des articles récents de recherche mathématique.



Il y a donc une frontiere trés nette entre texte savant et texte de
vulgarisation : un texte de vulgarisation ne peut pas rendre compte
completement d’une avancée mathématique, car il ne contient pas les

éléments nécessaires a sa validation comme vérité mathématique.

Etudes de cas

Ayant mis en évidence le réle tres particulier du texte mathématique
savant, c’est-a-dire de l'article de recherche, nous allons maintenant
observer, a partir de deux exemples tirés des mathématiques des
quinze derniéres années, ses modes de validation. Tentons d’abord
d’en présenter les criteres. On peut considérer qu’il y en a trois :

® intérét et originalité des résultats et des méthodes : le résultat
est-il intéressant ?

e difficulté et élégance des démonstrations : le résultat est-il
difficile ?

® correction des démonstrations : le résultat est-il juste ?

Ces trois critéres ne se situent pas sur le méme plan. Le troisieme
définit le caractéere mathématique ou non de I'écrit. Il intervient
comme préalable ; car, il n'y a pas de démonstration, il n’y a pas de
théoréme?* et il est donc inutile de se prononcer sur l'intérét ou la
difficulté de l'article.

Le théoréme de Fermat.Le premier est la démonstration, en 1994, par le

mathématicien Andrew Wiles, du fameux « grand théoreme de

Fermat »>°, L'énoncé de Fermat est un des trés rares que I'on puisse
comprendre avec les connaissances du « socle commun » enseigné au

college.

Soit n un entier supérieur ou égal a 3. Uéquation x " +y " =z

" n’admet pas de solution entiére (c’est-a-dire avecx, y, z

entiers) avec x, y et z non nuls?®,

Le mathématicien francais Pierre de Fermat (1601-1665), magistrat de
profession, prétendait en avoir une démonstration, mais ne 'avait pas
révélée malgré l'insistance des mathématiciens de son temps : il avait
écrit vers 1637, dans la marge de son livre de chevet, I Arithmétique de
Diophante, I’énoncé du théoréme, ainsi que la phrase :

De cette chose admirable cette marge trop étroite ne

contiendrait pas la démonstration?’.

Depuis, de nombreux cas particuliers (pour des valeurs particuliéres
de n) avaient été résolus, mais les nombreuses tentatives, par les plus
grands mathématiciens, pour en donner la démonstration dans le cas

général avaient toutes échoué. Bref, le théoréme de Fermat n’était



qu'une conjecture, comme les mathématiciens appellent une
proposition qui n’est pas démontrée, mais pour laquelle il existe des
indices et intuitions convaincants de ce qu'elle est vraie. En
I'occurrence, la conjecture était tellement célebre quelle était
couramment abrégée en «Fermat » tout court : « Il travaille sur

Fermat », « Ceci réduit Fermat a... »

Les attaques successives, au cours des années, de Fermat, avaient fait
évoluer le probléeme. La formulation de la conjecture de
Taniyama-Shimura-Weil a la fin des années 1950, puis les travaux de
Hellegouarch, Frey et Serre avaient abouti a la démonstration, en 1986,
d’'un théoréeme de Ribet montrant que la vérité de la conjecture de
Taniyama-Shimura-Weil impliquait celle de la conjecture de Fermat.

Andrew Wiles, mathématicien anglais né en 1954, professeur a
I'université de Princeton, était considéré comme un des meilleurs
spécialistes mondiaux de la « théorie des nombres », cette branche des
mathématiques qui s’intéresse aux propriétés des nombres entiers.
Pour autant, il publie peu, préférant se consacrer a des projets de
longue haleine. Ainsi, en 1993, il n’a rien publié depuis plusieurs
années. Lors d'un congrés enjuin 1993 a linstitut Newton de
Cambridge (Royaume-Uni), il doit donner une série de trois
conférences sur un titre ésotérique pour le commun des mortels,

évocateur pour les initiés « Formes modulaires, courbes elliptiques et

représentations galoisiennes?®

», mais en méme temps assez vague
pour ne rien révéler. La rumeur enfle, passant en quelques jours de
« Va-t-il annoncer un progres décisif vers Fermat ? » a « Va-t-il
annoncer Fermat ? » En effet, a la fin de sa troisiéme conférence, Wiles
annonce la démonstration d'un cas particulier de la conjecture de
Shimura-Taniyama-Weil - cas particulier certes, mais suffisant pour

que la conjecture de Fermat s’en déduise !

Reste une barriére décisive : sa démonstration est-elle correcte, et en
particulier est-elle compleéte ? Sept ans de travail acharné sont en jeu.
L’article de 200 pages est tout de suite soumis a la revue mathématique
allemande Inventiones Mathematice. LU'éditeur, 'américain Barry Mazur,
désigne, a la place des deux qui sont la norme, un groupe de six
« referees », ces relecteurs qui doivent, comme pour toute revue a
comité de lecture, donner un avis sur la nécessité de la publication.
Lun des six, Nick Katz, collegue de Wiles aPrinceton, chargé plus
particulierement du chapitre 3, y consacre son été. Par souci de ne
rien laisser au hasard, il se fait assister par Luc Illusie, professeur a
Orsay. Lun et l'autre sont des mathématiciens de premier plan,
connus pour leur rigueur. Ils lisent ligne a ligne, avec pour but de
comprendre les arguments avancés, et parfois ils restent bloqués. Ils
interrogent alors Wiles par courrier électronique et obtiennent dans
un délai de quelques heures une réponse qui apporte les précisions
nécessaires. Mais la question qu’ils posent le 23 aolit reste sans
réponse. Dans le courant du mois de septembre, Wiles se rend compte



quily a une erreur.

Des rumeurs se répandent, et finalement, Wiles lui-méme annonce en
décembre qu’il y a une « lacune » dans sa démonstration et ajoute qu’il
espere pouvoir la combler rapidement?’,

1l décide enjanvier 1994 de faire appel a Richard Taylor, son ancien
étudiant, désormais professeur aHarvard. Ils travaillent tout le
printemps et tout I'été. Wiles est sur le point de renoncer. Mais en
septembre, il comprend brusquement comment combler la lacune.
Larticle de 1993 est transformé en deux articles, I'un de Taylor et
Wiles, 'autre de Wiles seul. Larchitecture générale reste la méme : ces

articles démontrent ce cas particulier de Shimura-Taniyama-Weil *°
qui implique Fermat. Cette fois, la plus grande partie de l'article de
1993 ayant déja passé le test de la vérification avec succes, ce qui reste
est plus facile, et les deux articles sont publiés rapidement, dés 1995,

dans la revue Annals of Mathematics 3.

Pour notre propos ici, I'intérét de cette longue histoire est d’abord
qu’elle montre que la lecture d’un texte mathématique peut demander
un effort énorme. 1l ne s’agit pas ici seulement de son caractére
ésotérique pour le non-mathématicien, qui va de soi comme

I'introduction du chapitre II de I'article de Wiles le montre :

Ce chapitre est consacré a 1'étude de certaines
représentations galoisiennes. Dans la premiére section,
nous introduisons et étudions la théorie des déformations
d eMazur et en étudions divers raffinements. Ces
raffinements seront nécessaires pour rendre précise la

correspondance entre anneaux universels de déformation

et anneaux de Hecke®?,

Cet effort de compréhension a été effectué, pour le texte de Wiles, par

quelques-uns des meilleurs spécialistes mondiaux>> du sujet abordé,
ceux-la mémes qui avaient essayé de démontrer la conjecture. IIs
étaient, pour la plupart, présents lors de la conférence de Cambridge
o U Wiles avait annoncé sa démonstration. Et ils étaient bien siir
volontaires pour participer a la relecture du manuscrit, aboutissement

d’un effort collectif étalé sur des centaines d’années.

La conjecture de Fermat est un de ces grands probléemes qui
structurent les mathématiques sur la longue durée ; les efforts pour la
résoudre ont fait naitre, en plus de trois cent cinquante ans, de
nombreuses idées nouvelles, profondes, dont les conséquences sur le
développement des mathématiques vont bien au-dela du probleme
posé par Fermat. Car paradoxalement, I’équation de Fermat est sans
grand intérét, et la réponse apportée par Wiles n’a guére de

conséquences>?, Certains ont méme regretté la disparition de ce



véritable moteur de découverte qu’était la poursuite de la conjecture
Fermat, regret tempéré par la nouveauté et les conséquences des
méthodes de Wiles.

La conjecture d e Poincaré. Deuxiéme exemple, la résolution toute
récente de la conjecture dePoincaré par le mathématicien russe
Grigori Perelman. C’estPoincaré qui, en 1904, posa la question

suivante :

Est-il possible que le groupe fondamental d’une variété v
de dimension 3 se réduise a la substitution identique, et que
pourtant V ne soit pas la sphére® ?

Question rhétorique, car Poincaré pensait que la réponse était
négative.

En langage mathématique contemporain, la conjecture se traduit par :
Si une variété compacte de dimension 3 est simplement connexe (SC),

alors cette variété est homéomorphe a la sphére de dimension 3¢,
Poincaré sait bien que cette derniére propriété est vraie en dimension 2.
Essayons d’abord de comprendre ce cas « bien connu ». Quand le
mathématicien parle de sphere, il distingue I'objet plein, appelé boule,
de sa surface, la pellicule sans épaisseur séparant intérieur et

extérieur, que I'on appelle sphére. Ainsi, la surface de la Terre est une

sphere®’, dont tous les points sont a 6 378 km du centre, mais les
personnages de Jules Verne voyagent dans la boule. Ce que nous
mangeons d’une orange est son intérieur, la boule, et non la peau, la
sphére. Une sphere est de dimension 2, car il faut exactement deux
paramétres pour y repérer un point : dans le cas de la Terre, la
longitude et la latitude, tandis que la boule est de dimension 3, car un
point de la boule est repéré par sa longitude, sa latitude et sa
profondeur.

Du point de vue de la topologie, la boule est un objet trés simple, tout
simplement parce qu'on peut rapetisser une boule a I'infini jusqu’a un
point sans en changer la forme. Ce n’est pas le cas pour la spheére, qui
est donc plus intéressante. La principale observation est qu’on ne peut
pas attraper un objet sphérique, par exemple un ballon, avec un lasso :
dés qu’on serre le nceud coulant, la corde glisse sur le ballon et finit
par ne rien enserrer. Clest cette propriété qu'on exprime
mathématiquement par « la sphere est SC ».

Une surface ayant la forme d’'une chambre 2 air n’est pas SC : on peut
nouer une corde autour de la chambre a air de telle fagon qu’il ne sera
pas possible de I'enlever sans défaire le nceud, casser la corde ou
déchirer la chambre a air. Une chambre a air ne peut pas étre
déformée en un ballon, mais un ballon de rugby peut étre déformé en
ballon de football. Ces faits sont des manifestations visibles de la

propriété de Poincaré en dimension 2 : une variété SC de dimension 2



est homéomorphe a une sphere.

Concevoir ce qu’est une sphére de dimension 3 n’est pas chose facile ; de
méme qu'une sphere de dimension 2 ne peut étre comprise que
baignant dans un espace de dimension 3, une sphére de dimension 3
ne peut étre comprise que baignant dans un espace de dimension 4,
dont notre intuition géométrique ne rend pas compte. L'idée géniale
de Poincaré est que ce qui vaut en dimension 2 doit étre également

vrai en dimension 3.

Dans le courant du xx° siécle il y eut de nombreuses tentatives pour
démontrer la conjecture de Poincaré. Toutes ont échoué, malgré

quelques annonces prématurées réduites a néant par la mise en

évidence d’erreurs ou de lacunes dans la démonstration : il y un

véritable cimetiére d’annonces ratées>®

, sans parler évidemment des
bien plus nombreuses tentatives dont les auteurs ont compris par eux-

mémes qu’elles n’aboutiraient pas.

La conjecture de Poincaré fut rapidement généralisée aux dimensions
supérieures a 3. La formulation en est un peu plus compliquée, et nous
ne la donnerons pas ici. Curieusement, les généralisations se sont
révélées plus faciles a démontrer que le probléme initial : en 1960, le
mathématicien américain Stephen Smale donna une démonstration
valable en toute dimension = 5. Il fallut encore attendre plus de vingt
ans pour qu'un autre mathématicien américain, Michael Freedman,
s’appuyant notamment sur des résultats du Britannique Simon
Donaldson, donne la démonstration en dimension 4. Pour leurs
travaux, Smale, Freedman et Donaldson obtinrent tous trois la
médaille Fields, Smale en 1966, Freedman et Donaldson en 1986. Et il
fallut encore vingt ans pour qu'un mathématicien russe, Grigori
Perelman, publie, en 2002 et 2003, trois prépublications sur le site

arXiv annongant la démonstration en dimension 3.

Perelman suivait une voie ouverte en 1982 par William Thurston, lui
aussi médaillé Fields, et par Richard Hamilton. Thurston avait formulé,

dans le cadre d’'un ambitieux programme pour « comprendre la

dimension 3*° », une conjecture dite de « géométrisation » qui
impliquait celle dePoincaré. Indépendamment, Hamilton avait
proposé une approche utilisant une équation aux dérivées partielles,
donc des méthodes d’analyse, pour s’attaquer au probléme, et la série
d’articles qu’il publie entre 1982 et 1997 fit faire de grandes avancées
dans cette direction.

La parution des prépublications de Perelman suscita immédiatement
une énorme curiosité, malgré le scepticisme induit par le nombre
important d’échecs précédents, puis une intense activité (aux Ftats-
Unis, en Chine, en France...) pour comprendre les idées et vérifier si la
démonstration était complete. En 2003, la prudence est encore de

mise ; 'éminent mathématicien américain John Milnor écrit :



Néanmoins, il est clair qu’il a introduit des méthodes
nouvelles qui sont a la fois puissantes et belles, et qu'il a

apporté une contribution substantielle a notre

compréhension??,
En 2005, aprésdeuxannées de travail collectif a Grenoble sur les
manuscrits de Perelman, deux mathématiciens francais, Laurent

Bessiére et Gérard Besson, expriment un optimisme prudent :

Les articles de Perelman sont difficiles a lire et leur
vérification pas encore terminée, notamment en ce qui
concerne I'étude en temps long du flot avec chirurgie. [...] A

ce jour, mon humble avis est que la conjecture de Poincaré
41

est prouvée™".
Toutefois, le cas de la conjecture de Poincaré est plus
« simple » dans le schéma de G. Perelman. [...] Cauteur du

présent texte est convaincu que les conjectures 0.1 et 0.2
42

sont prouvées”.
Enmai 2006 la prudence est abandonnée : le comité Fields décide
d’attribuer aPerelman une des médailles Fields qui doivent étre
décernées I'été suivant au congres de Madrid. Sollicité, celui-ci répond
en substance au président de 1'Union mathématique internationale

que le prix est sans aucune importance pour lui, ajoutant cette phrase

sublime?3 :

Tout le monde comprenant que [ma] démonstration est

correcte, aucune autre reconnaissance n’est nécessaire.

Ce refus fait les titres de journaux, heureux de confirmer ainsi le
cliché du savant fou - et en effet, Perelman est un personnage pour le
moins excentrique. Les autres médailles Fields passent au second plan,

ainsi que 'ampleur de la réalisation de Perelman lui-méme.

*

Nous avons indiqué ci-dessus trois critéres de jugement d’'un résultat
mathématique : intéressant, difficile, juste. On ne s’étonnera pas que
les deux narrations de la section précédente confirment la pertinence
de ces criteres.

Vérité. On s’attend qu’une assertion mathématique soit évidemment
juste, comme 2 + 2 = 4, ou évidemment fausse : c’est presque le sens
courant du mot mathématique. Nos exemples ont montré, au
contraire, a quel point il est difficile d’établir un jugement.

Intérét et difficulté. Si les résultats annoncés par Wiles et Perelman
n’avaient pas été intéressants, ils n’auraient pas suscité un tel effort de



vérification. Les problemes étaient anciens, et c’est l'histoire qui leur
avait donné leurs titres de noblesse : toute annonce de solution allait
automatiquement susciter I'intérét des spécialistes et bien au-dela. La
difficulté des démonstrations allait de soi, ce que leffort de
vérification a confirmé. Dans un cas comme dans l'autre, les
démonstrations n’ont pas décu, bien au contraire, car elles ont I'une et
l'autre d surmonter des difficultés techniques considérables et se
reposer sur des approches entierement nouvelles.

On voit ainsi, a travers ces exemples, a quel point les mathématiques
s’écartent des clichés dont on les affuble :

® les mathématiques ne sont pas une pure construction de U'esprit,
car la réalité mathématique oppose a l'effort de vérité une
résistance obstinée ;

® les mathématiques ne sont pas un exercice de pure logique ou de
simple comptabilité : esprit créatif et imagination sont
constamment requis.

Loin d’étre un long fleuve tranquille, les mathématiques sont donc un
sport de combat. Il faut non seulement travailler, mais construire un
cadre approprié de langage. Par surprise, les symboles de ce langage
prennent vie bien au-dela du cadre qui leur avait été assigné au
départ. Et tout ce combat est mené au nom d’'un objectif sublime et

dérisoire de vérité, avec le risque permanent de I’échec.

Craindre I'erreur et craindre la vérité est une seule et méme
chose. Celui qui craint de se tromper est impuissant a
découvrir. C’est quand nous craignons de nous tromper que
I'erreur qui est en nous se fait immuable comme un roc. Car
dans notre peur, nous nous accrochons a ce que nous avons
décrété « vrai » un jour, ou a ce qui depuis toujours nous a
été présenté comme tel. Quand nous sommes mus, non par
la peur de voir s’évanouir une illusoire sécurité, mais par
une soif de connatitre, alors l'erreur, comme la souffrance
ou la tristesse, nous traverse sans se figer jamais, et la trace

de son passage est une connaissance renouvelée.

Alexandre Grothendieck %4,

Lédifice ainsi construit est splendide. Mais nous autres
mathématiciens savons bien, avant méme de commencer, qu’a
I'extérieur de notre discipline personne ne peut comprendre notre
langue ni apprécier la beauté de notre travail. Et, au milieu du combat,
nous découvrons que toutes les précautions que nous avons prises

rendent méme difficile la communication entre nous.

Notes



1. Sagan, 1985. Film réalisé par Robert Zemeckis, avec Jodie Foster.

2. Chiffres publiés par 'INSEE le 2 janvier 2009.
3.Dans la pratique, c’est facile a faire uniquement pour des nombres
assez petits. Sinon, la méthode est impraticable, car trop longue.

4. Euclide.

5.« Le but unique de la science, c’est 'honneur de I'esprit humain »
(Jacobi, 1830).

6.Le systéeme d’axiomes est arbitraire, mais c’est la richesse de la
théorie qu’on en déduit, richesse formelle ou capacité a rendre compte
de la réalité physique, qui lui donne de la valeur.

7. 1l est exposé dans Al-Khwarizmi. Le mot « algorithme » est dérivé du
nom du mathématicien de Bagdad Al-Khwarizmi (790-840) : le titre
latin de l'ouvrage pourrait se traduire par : « Al-Khwarizmi sur l'art
indien de la numération ». La notion d’algorithme, trés importante
historiquement, a pris une place centrale avec I'apparition de
I'informatique : un programme n’est rien d’autre que 1'écriture d'un
algorithme dans un langage de programmation.

8. Fibonacci, 1202.

9. Ibid.

10.1l y a ici un point mathématiquement délicat : la distinction entre
nombre et écriture du nombre. Les nombres « 347 » et « 59 » s’écrivent
respectivement 347 et 59. La multiplication « 347 » x « 59 » = « 20 473 »
qui a pour écriture 20 473. L'algorithme de la multiplication donne une
méthode pour établir cette représentation, justifiée par un théoreme
montrant qu'en effet le résultat de la multiplication et le résultat
fourni par I'algorithme coincident.

11. Son ouvrage principal est Al-Khwarizmi, 825, Al Kitab al Mukhtasar fi
Hosab al jabr wal-I-Mugabala, publié vers 825. Le mot « algebre » est
dérivé du mot « al jabr » contenu dans le titre du livre, qui en effet
donne les bases du calcul algébrique.

12.Cardan, 1545. La résolution elle-méme est attribuée a Tartaglia,
mais c’est Cardan qui la publie pour la premieére fois.

13. Sur Décriture symbolique en mathématiques et ses enjeux, on
pourra se reporter a Serfati, 2005.

14. Viéte, 1591.

15. Descartes, 1637.

16. Mathématicien suisse (1707-1783).

17. 11 ne faut pas confondre cette rupture avec celle de Descartes, qui,
par la méthode des coordonnées, rend compte de la géométrie par le
calcul. Ici, ce sont les points de I'espace eux-mémes qui deviennent des
nombres. On pourra consulter Dhombres, 2005.

18.1Isaac Newton (Woolsthorpe 1642 - Londres 1727) a élaboré son
« calcul des fluxions » dés 1666 ; mais la premiere publication le
développant est Newton 1687. Gottfried Wilhelm Leibniz (Leipzig 1646
- Hanovre 1716) élabore son calcul différentiel entre 1673 et 1676, et
I'expose dans Leibniz, 1684.

19. Cette assertion doit étre nuancée : la découverte de I'analyse « non



standard » dans les années 1960, a partir des travaux des logiciens, a
permis de donner un sens aux infinitésimaux de Leibniz.

20.Par convention, dans ce texte, le mot mathématicien se référe
uniquement au chercheur en mathématiques qui travaille dans la
recherche académique (quel que soit son statut : pour la France,
enseignant-chercheur ou chercheur dans un organisme).

21.Dans les sciences expérimentales, 'ordre dans I’énumération des
auteurs est lié a 'importance de leur contribution individuelle, selon
des conventions complexes.

22. En biologie, la plupart des articles publiés sont cités dans un délai
de trois ans apres leur publication, apres quoi ils ne le sont presque
plus ; ce qui n’est pas du tout le cas en mathématiques ou les citations
s’étalent sur de nombreuses années.

23. Weil, 1964.

24. 1l importe de nuancer cette affirmation. D’abord par une évidence :
un article contenant en général plusieurs énoncés, il est possible
qu'une erreur éventuelle n’entache qu'une partie des assertions de
I'article. Mais de maniére plus essentielle, il arrive qu'un travail
mathématique dont les démonstrations sont incomplétes soit
néanmoins considéré comme représentant une avancée importante
(cf. Andler, 2005).

25. Voir les détails dans I'excellent livre de vulgarisation : Singh, 1997.
On pourra aussi consulter avec profit I'ouvrage plus érudit : Goldstein,
1995.

26.Pourn = 2, I'équation admet bien au contraire une infinité de
solutions, dont la plus simple est x = 3,y = 4,z = 5. Par le théoreme de
Pythagore, le casn = 2 s’'interpréte comme la recherche de triangles
rectangles dont les longueurs des cdtés sont des nombres entiers.
27.« Cuius rei demonstationem mirabilem sane detexi hanc marginis
exiguitas non caperet. » On pense que Fermat avait appliqué, a tort dans
ce cas, sa méthode de descente infinie qui lui avait permis de résoudre
d’autres équations analogues a celle-la.

28. « Modular forms, elliptic curves and Galois representations. »

29. La distinction entre erreur et lacune est parfois subtile, ou affaire
de communication : la découverte d'une erreur dans une
démonstration est la mise en évidence, par un exemple, de ce qu'une
proposition qui joue un réle décisif dans 'enchainement logique est
fausse. Une lacune est la découverte que la démonstration d’une
proposition également décisive manque, et qu'elle ne va pas de soi,
alors qu'elle était considérée par l'auteur comme plus ou moins
évidente.

30. En 2001, Christophe Breuil, Brian Conrad, Fred Diamond et Richard
Taylor ont achevé la démonstration de la conjecture dans le cas
général.

31. Wiles, 1995 ; Taylor et Wiles, 1995.

32. « This chapter is devoted to the study of certain Galois representations. In
the first section, we introduce and study Mazurs’ deformation theory and

study various refinements of it. These refinements will be needed later to make



precise the correspondence between the universal deformation rings and the
Hecke rings. »

33. Le caractere international de la recherche n’est pas un vain mot.
Pour ne parler que du théoréme de Fermat et des personnages cités
dans ce bref résumé, Fermat est francais, comme Weil, Serre,
Hellegouarch et Illusie ; Taniyama et Shimura sont japonais ; Ribet,
Katz et Mazur sont américains ; Frey est allemand ; Wiles et Taylor sont
britanniques.

34.A contrario la conjecture ou hypothese de Riemann, qui date de
1859 et n'est toujours pas démontrée, a de trés nombreuses
conséquences ; beaucoup de théoremes sur les nombres premiers sont
démontrés « si I’hypothése de Riemann est vérifiée ».

35. Poincaré [1904].

36. Voir le texte de John Milnor sur la conjecture de Poincaré, ainsi
que plusieurs documents trés intéressants a l'adresse
http://www.claymath.org/millennium/Poincare Conjecture/perelma
n+expositions.php

37. Cette assertion est légerement inexacte, car la Terre est aplatie aux
poles, mais c’est sans importance ici.

38. Voir Bing, 1964. Depuis 1964, le cimetiére s’était bien enrichi.

39. Apres les travaux de Smale, il était clair que les questions ouvertes
les plus intéressantes concernaient les dimensions 3 et 4, l'une et
I'autre posant des probléemes tres différents.

40. « However, it is clear that he has introduced new methods that are both
powerful and beautiful and made a substantial contribution to our
understanding. » (Milnor, 2003.)

41, Laurent Bessiére, in Bessieére et al., 2005.

42, Gérard Besson, in ibid.
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